Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Braz. J. Pharm. Sci. (Online) ; 58: e19106, 2022. tab, graf
Article in English | LILACS | ID: biblio-1374575

ABSTRACT

Abstract In this work, polystyrene-b-poly (acrylic acid) (PS-b-PAA) nanovesicles were coated by modified chitosans aiming at studying its physicochemical parameters. The chitosan (CS) was chemically modified to add hydrophilic and/or hydrophobic groups, obtaining three modified chitosans. The PS-b-PAA nanovesicles were obtained by organic (1,4-dioxane) cosolvent method in water, resulting in nanovesicles with less than 150 nm of diameter (polydispersibility index - PDI at 90° = 0.106), measured by dynamic light scattering (DLS) and transmission electron microscopy (TEM), and negative zeta potential (-37.5 ± 3.2 mV), allowing the coating of its surface with oppositely charged polysaccharides, such as the CS and the modified chitosans. The coating process was made by mixing the colloidal suspensions with the CS and the modified chitosans at specific ENT#091;CS-xENT#093;/ENT#091;PS-b-PAAENT#093; ratios (0.001 to 1.0 wt %) and measuring the change in size and surface charge by DLS and zeta potential. Upon reaching maximum adsorption, the zeta potential parameter was positively stabilized (+26.7 ± 4.1 mV) with a hydrodynamic diameter slightly longer (< 200 nm of diameter). The encapsulation efficiency (EE) of minoxidil, quantified by capillary electrophoresis, was 50.7%, confirming their potential as drug delivery carriers and the coating process showed the possibility of controlling the surface charge nature of these nanovesicles


Subject(s)
Chitosan/metabolism , Minoxidil/analogs & derivatives , Microscopy, Electron, Transmission/methods , Efficiency/classification , Dynamic Light Scattering/instrumentation , Methods
2.
São Paulo; s.n; s.n; 2021. 96 p. tab, graf, ilus.
Thesis in Portuguese | LILACS | ID: biblio-1416965

ABSTRACT

Os cubossomos são partículas nanoestruturadas em forma de bicamada lipídica, bicontínuas e altamente curvadas, as quais devem ser estabilizadas por um polímero não-iônico, neste caso o Pluronic® F-127. Podem ser compostos por alguns tipos de lipídios específicos que possuem a capacidade de se auto associar em estruturas cúbicas quando estão em excesso de água, como o fitantriol (PHY) e a monoleína (GMO). Devido a sua estrutura única, cubossomos possuem um grande potencial para serem considerados como sistemas drug delivery. Os sistemas drug delivery são amplamente utilizados na pesquisa farmacêutica e em contextos clínicos para aumentar a eficácia de compostos utilizados para diagnóstico e de fármacos. No caso da cinarizina (CNZ), fármaco já aprovado para o tratamento de náuseas, vômitos e vertigens causadas pela doença de Ménière, existem inúmeros efeitos colaterais associados a sua baixa solubilidade. Desta forma, a encapsulação em cubossomos se torna uma abordagem promissora para resolver os problemas de atividade farmacológica relacionados ao fármaco. Neste trabalho, realizamos uma caracterização biofísica da interação da CNZ em cubossomos (contendo PHY ou myverol, MYV, sendo este composto por 80% de GMO). As técnicas biofísicas utilizadas foram: espalhamento de raios-X em baixos ângulos (SAXS), espalhamento dinâmico de luz (DLS), microscopia eletrônica de transmissão (TEM), crio microscopia eletrônica de transmissão (Crio-TEM), análise de rastreamento de nanopartículas (NTA) e potencial zeta. A cromatografia líquida de alta eficiência (HPLC) foi realizada para verificar a porcentagem de eficiência de encapsulação (%EE) da CNZ nos cubossomos, enquanto que a citotoxicidade foi avaliada em eritrócitos através da análise da atividade hemolítica. Inicialmente, a influência de diferentes solventes (acetona, clorofórmio, etanol e octano) nas propriedades estruturais de cubossomos de PHY foi investigada, a fim de se minimizar os efeitos do solvente utilizados para a encapsulação da CNZ. Para amostras com acetona, descobriu-se que apenas altas concentrações tiveram influência na estrutura cristalográfica das nanopartículas, sendo o resultado foi totalmente reversível após 24h. O etanol fez com que o parâmetro de rede aumentasse de 10-15%. O clorofórmio e o octano tiveram efeitos diferentes sobre cubossomos de PHY em comparação com a acetona e o etanol; ambos induziram uma transição cúbico-hexagonal-micelar. Posteriormente, constatamos que as nanopartículas de PHY e MYV apresentaram diferentes estruturas cristalográficas, sendo elas Pn3m e Im3m, respectivamente. Devido a problemas com a baixa solubilidade de CNZ em PHY os estudos para esse lipídio foram suspensos. Nos testes para cubossomos de MYV ao incorporar a CNZ foi observado uma alteração da estrutura cúbica de Im3m para Pn3m e os valores dos parâmetros de rede se alteraram de acordo com a estrutura cristalina encontrada, porém os valores não apresentaram diferenças significativas de tamanho quando se trata da mesma estrutura, sugerindo que a CNZ não interferiu no parâmetro de rede. Os tamanhos das nanopartículas apresentaram uma população monodispersa com ~200 nm. DLS mostrou uma interferência da CNZ no tamanho dos cubossomos, variando de forma diretamente proporcional a concentração de CNZ na amostra, enquanto as técnicas de NTA e microscopia apresentaram nanopartículas de tamanhos bastante variados, mas independente da interferência da CNZ. A encapsulação de CNZ também foi dosada por HLPC em cubossomos de MYV, obtendo um limite superior de 0,6 mg/mL. A atividade citotóxica dos cubossomos foi testada em eritrócitos, revelando uma taxa de hemólise bastante inferior em cubossomos com CNZ em relação a cubossomos puros. Acreditamos que os cubossomos podem sim ser utilizados como sistemas carreadores de CNZ


Cubosomes are nanostructured particles in the form of a lipid bilayer, bicontinuous and highly curved, which must be stabilized by a non-ionic polymer, in this case Pluronic® F-127. They can be composed of some types of specific lipids that have the ability to self-associate in cubic structures when they are in excess of water, such as phytantriol (PHY) and monolein (GMO). Due to their unique structure, cubosomes have a great potential to be considered as drug delivery systems. Drug delivery systems are widely used in pharmaceutical research and clinical settings to increase the efficacy of compounds used for diagnostics and drugs. In the case of cinnarizine (CNZ), a drug already approved for the treatment of nausea, vomiting and vertigo caused by Ménière's disease, there are numerous side effects associated with its low solubility. Thus, cubosomal encapsulation becomes a promising approach to solve drug-related problems of pharmacological activity. In this work, we performed a biophysical characterization of the CNZ interaction in cubosomes (containing PHY or myverol, MYV, which is composed of 80% GMO). The biophysical techniques used were: low angle X-ray scattering (SAXS), dynamic light scattering (DLS), transmission electron microscopy (TEM), cryo transmission electron microscopy (Crio-TEM), nanoparticle tracking analysis (NTA) and zeta potential. High performance liquid chromatography (HPLC) was performed to verify the percentage of encapsulation efficiency (%EE) of CNZ in cubosomes, while cytotoxicity was evaluated in erythrocytes by analyzing the hemolytic activity. Initially, the influence of different solvents (acetone, chloroform, ethanol and octane) on the structural properties of PHY cubosomes was investigated in order to minimize the effects of the solvent used for the encapsulation of CNZ. For samples with acetone, it was found that only high concentrations had an influence on the crystallographic structure of the nanoparticles, with the result being fully reversible after 24h. Ethanol caused the network parameter to increase by 10-15%. Chloroform and octane had different effects on PHY cubosomes compared to acetone and ethanol; both induced a cubic-hexagonal-micellar transition. Later, we found that PHY and MYV nanoparticles presented different crystallographic structures, being Pn3m and Im3m, respectively. Due to problems with the low solubility of CNZ in PHY, studies for this lipid were suspended. In the tests for MYV cubosomes when incorporating CNZ, a change in the cubic structure from Im3m to Pn3m was observed and t he lattice parameters changed according to the crystal structure found, but the differences observed were not significant when it comes to the same structure, suggesting that the CNZ did not interfere with the network parameter. The nanoparticle sizes showed a monodisperse population with ~200 nm. DLS showed an interference of CNZ in the size of the cubosomes, varying directly proportionally to the concentration of CNZ in the sample, while NTA and microscopy techniques showed nanoparticles of widely varying sizes, but independent of CNZ interference. CNZ encapsulation was also dosed by HLPC in MYV cubosomes, obtaining an upper limit of 0.6 mg/ml. The cytotoxic activity of cubosomes was tested in erythrocytes, revealing a much lower rate of hemolysis in cubosomes with CNZ compared to pure cubosomes. We believe that cubosomes can indeed be used as CNZ carrier systems


Subject(s)
Cinnarizine/analysis , Efficiency , Acetone/agonists , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid/methods , Microscopy, Electron, Transmission/instrumentation , Nanoparticles/adverse effects , Dynamic Light Scattering/instrumentation , Pharmaceutical Research , Lipid Bilayers/pharmacology , Meniere Disease/pathology
3.
Braz. J. Pharm. Sci. (Online) ; 56: e18171, 2020. tab, graf
Article in English | LILACS | ID: biblio-1132034

ABSTRACT

Gold coated magnetite nanoparticles were prepared and coated with ranibizumab as an ocular drug delivery system. The surface morphologies of the nanoparticles were determined by Scanning Electron Microscopy (SEM). The size and surface charge were determined by using the dynamic light scattering (DLS) technique. Crystallographic properties of the gold coated Fe3O4 nanoparticles were recorded on X-ray diffractometer (XRD) the XRD pattern of nanoparticlees were shown to have uniqe Fe3O4 and gold peaks. Conjugation of ranibizumab onto nanoparticles was achieved using the physical adsorption method. The amount of ranibizumab on the surface of the nanoparticles was determined by thermogravimetric analysis (TGA). In the in vitro release studies performed using UV spectroscopy; it was found that almost 60% of antibodies were released within the first 30 minutes. Antibody activity after release studies was also proved with ELISA. Non-toxicity of gold coated Fe3O4 particles were proved with MTT. Results of the studies, showed that the antibody conjugated magnetic nanoparticle system could be a potential treatment system for ocular diseases.


Subject(s)
In Vitro Techniques/instrumentation , Magnetite Nanoparticles/administration & dosage , Ranibizumab/adverse effects , Spectrum Analysis/instrumentation , X-Rays , Enzyme-Linked Immunosorbent Assay/instrumentation , Microscopy, Electron, Scanning/methods , Drug Delivery Systems , Dynamic Light Scattering/instrumentation , Gold , Methods
4.
International Journal of Oral Biology ; : 108-114, 2019.
Article in English | WPRIM | ID: wpr-764043

ABSTRACT

In the present study, rutile phase titanium dioxide nanoparticles (R-TiO₂ NPs) were prepared by hydrolysis of titanium tetrachloride in an aqueous solution followed by calcination at 900℃. The composition of R-TiO₂ NPs was determined by the analysis of X-ray diffraction data, and the characteristic features of R-TiO₂ NPs such as the surface functional group, particle size, shape, surface topography, and morphological behavior were analyzed by Fourier-transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy, transmission electron microscopy, dynamic light scattering, and zeta potential measurements. The average size of the prepared R-TiO₂ NPs was 76 nm, the surface area was 19 m²/g, zeta potential was −20.8 mV, and average hydrodynamic diameter in dimethyl sulfoxide (DMSO)–H₂O solution was 550 nm. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and morphological observations revealed that R-TiO₂ NPs were cytocompatible with oral cancer cells, with no inhibition of cell growth and proliferation. This suggests the efficacy of R-TiO₂ NPs for the aesthetic white pigmentation of teeth.


Subject(s)
Dimethyl Sulfoxide , Dynamic Light Scattering , Hydrodynamics , Hydrolysis , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Mouth Neoplasms , Nanoparticles , Particle Size , Pigmentation , Spectrometry, X-Ray Emission , Spectrum Analysis , Titanium , Tooth , X-Ray Diffraction
5.
Mycobiology ; : 47-51, 2018.
Article in English | WPRIM | ID: wpr-730002

ABSTRACT

In the present study, the characterization and properties of silver nanoparticles from Yucca shilerifera leaf extract (AgNPs) were investigated using UV–visible spectroscopic techniques, zeta potential, and dynamic light scattering. The UV–visible spectroscopic analysis showed the absorbance peaked at 460 nm, which indicated the synthesis of silver nanoparticles. The experimental results showed silver nanoparticles had Z-average diameter of 729 nm with lower stability (195.1 mV). Additionally, our dates revealed that AgNPs showed broad spectrum antagonism (p ≤ .05) against Fusarium solani (83.05%) and Macrophomina phaseolina (67.05%) when compared to the control after nine days of incubation. Finally, AgNPs from leaf extracts of Y. shilerifera may be used as an agent of biocontrol of microorganism of importance. However, further studies will be needed to fully understand the agronanotechnological potentialities of AgNPs from Yucca schidigera.


Subject(s)
Dynamic Light Scattering , Fragaria , Fusarium , Nanoparticles , Silver , Yucca
6.
Arq. bras. oftalmol ; 80(2): 108-113, Mar.-Apr. 2017. tab, graf
Article in English | LILACS | ID: biblio-838784

ABSTRACT

ABSTRACT Purpose: Avastin® (bevacizumab) is an anti-vascular endothelial growth factor (VEGF) monoclonal antibody given as an off-label drug by intravitreal administration for treatment of ocular diseases. The drug's clinical application and its cost-benefit profile has generated demand for its division into single-use vials to meet the low volume and low-cost doses necessary for intraocular administration. However, the safety of compounding the drug in single-use vials is still under discussion. In this study, the stability and efficacy of Avastin® repacked in individual single-use glass vials and glass ampoules by external compounding pharmacies were evaluated. Methods: Polyacrylamide gel electrophoresis (PAGE), size-exclusion chromatography (SEC), dynamic light scattering (DLS), and turbidimetry were selected to detect the formation of aggregates of various sizes. Changes in bevacizumab biological efficacy were investigated by using an enzyme-linked immunosorbent assay (ELISA). Results: Repacked and reference bevacizumab showed similar results when analyzed by PAGE. By SEC, a slight increase in high molecular weight aggregates and a reduction in bevacizumab monomers were observed in the products of the three compounding pharmacies relative to those in the reference bevacizumab. A comparison of repacked and reference SEC chromatograms showed that the mean monomer loss was ≤1% for all compounding pharmacies. Protein aggregates in the nanometer- and micrometer-size ranges were not detected by DLS and turbidimetry. In the efficacy assay, the biological function of repacked bevacizumab was preserved, with <3% loss of VEGF binding capacity relative to that of the reference. Conclusion: The results showed that bevacizumab remained stable after compounding in ampoules and single-use glass vials; no significant aggregation, fragmentation, or loss of biological activity was observed.


RESUMO Objetivos: Avastin® (bevacizumabe) é um anticorpo monoclonal inibidor do fator de crescimento endotelial de vasos (VEGF) utilizado "off-label" por meio de administração intravítrea para o tratamento de doenças oculares. A sua aplicação clínica associada ao custo-benefício do medicamento gerou uma demanda para seu fracionamento em frascos de dose única para utilização pela via intraocular. No entanto, a segurança do fracionamento do anticorpo em frascos de dose única ainda é alvo de discussão. Neste trabalho, a estabilidade e a eficácia do Avastin® fracionado em frascos ou ampolas de vidro de dose unitária por farmácias de manipulação do mercado foram avaliadas. Métodos: As técnicas de eletroforese em gel de poliacrilamida (PAGE), cromatografia por exclusão de tamanho (SEC), espalhamento dinâmico da luz (DLS) e turbidimetria foram empregadas para avaliar a formação de agregados de diferentes tamanhos. Alterações na atividade biológica do bevacizumabe foram estudadas utilizando ELISA. Resultados: Amostras referência e do bevacizumabe fracionado apresentaram resultados semelhantes quando analisado por gel de poliacrilamida. Por cromatografia por exclusão de tamanho, um pequeno aumento na quantidade de agregados de alta massa molar seguido de uma redução nos monômeros do bevacizumabe foram observados para as amostras das três farmácias de manipulação quando comparado ao referência. A comparação dos cromatogramas mostrou uma quantidade de redução do monômero inferior a 1% para todas as amostras fracionadas. Por espalhamento dinâmico da luz e turbidimetria, não foram detectados agregados de proteína na faixa de tamanho de micrômetro e nanômetro. No ensaio de eficácia, o bevacizumabe fracionado preservou sua função biológica pois apresentou menos de 3% de perda na capacidade de ligação ao VEGF quando comparado ao referência. Conclusão: Este estudo sugere que o bevacizumabe se mantem estável após fracionamento em ampolas e frascos de vidro de dose unitária pois não foram observadas agregação e/ou fragmentação de proteínas e perda de atividade biológica em quan tidades significativas.


Subject(s)
Quality Control , Angiogenesis Inhibitors/chemistry , Drug Packaging , Bevacizumab/chemistry , Enzyme-Linked Immunosorbent Assay/methods , Chromatography, Gel/methods , Angiogenesis Inhibitors/analysis , Vascular Endothelial Growth Factor A/analysis , Drug Stability , Electrophoresis, Polyacrylamide Gel/methods , Intravitreal Injections , Bevacizumab/analysis , Dynamic Light Scattering/methods , Molecular Weight , Nephelometry and Turbidimetry/methods
7.
Electron. j. biotechnol ; 25: 13-20, ene. 2017. ilus, graf
Article in English | LILACS | ID: biblio-1008291

ABSTRACT

Background: A simple and efficient strategy for agarase immobilization was developed with carboxyl-functionalized magnetic nanoparticles (CMNPs) as support. The CMNPs and immobilized agarase (agarase-CMNPs) were characterized by transmission electron microscopy, dynamic light scattering, vibrating sample magnetometry, scanning electron microscopy, X-ray diffraction, thermogravimetric analysis, and zeta-potential analysis. The hydrolyzed products were separated and detected by ESI-TOF-MS. Results: The agarase-CMNPs exhibited a regular spherical shape with a mean diameter of 12 nm, whereas their average size in the aqueous solution was 43.7 nm as measured by dynamic light scattering. These results indicated that agarase-CMNPs had water swelling properties. Saturation magnetizations were 44 and 29 emu/g for the carriers and agarase-CMNPs, respectively. Thus, the particles had superparamagnetic characteristics, and agarase was successfully immobilized onto the supports. Agaro-oligosaccharides were prepared with agar as substrate using agarase-CMNPs as biocatalyst. The catalytic activity of agarase-CMNPs was unchanged after six reuses. The ESI-TOF mass spectrogram showed that the major products hydrolyzed by agarase-CMNPs after six recycle uses were neoagarotetraose, neoagarohexaose, and neoagarooctaose. Meanwhile, the end-products after 90 min of enzymatic treatment by agarase-CMNPs were neoagarobiose and neoagarotetraose. Conclusions: The enhanced agarase properties upon immobilization suggested that CMNPs can be effective carriers for agarase immobilization. Agarase-CMNPs can be remarkably used in developing systems for repeated batch production of agar-derived oligosaccharides.


Subject(s)
Oligosaccharides/metabolism , Enzymes, Immobilized , Magnetite Nanoparticles/chemistry , Glycoside Hydrolases/metabolism , Thermogravimetry , X-Ray Diffraction , Enzyme Stability , Catalysis , Microscopy, Electron, Transmission , Magnetometry , Dynamic Light Scattering , Glycoside Hydrolases/chemistry
8.
Ultrasonography ; : 378-384, 2017.
Article in English | WPRIM | ID: wpr-731011

ABSTRACT

PURPOSE: The purpose of this study was to establish a method for ultrasound (US) contrast agent synthesis and to evaluate the characteristics of the synthesized US contrast agent. METHODS: A US contrast agent, composed of liposome and sulfur hexafluoride (SF₆), was synthesized by dissolving 21 μmol 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine (DPPC, C₄₀H₈₀NO₈P), 9 μmol cholesterol, and 1.9 μmol of dihexadecylphosphate (DCP, [CH₃(CH₂)15O]₂P(O)OH) in chloroform. After evaporation in a warm water bath and drying for 12-24 hours, the contrast agent was synthesized using the sonication process by the addition of a buffer and SF₆ gas. The size distribution of the bubbles was analyzed using dynamic light scattering measurement methods. The degradation curve was evaluated by assessing the change in the number of contrast agent bubbles using light microscopy immediately, 12, 24, 36, 48, 60, 72, and 84 hours after synthesis. The echogenicity of the synthesized microbubbles was compared with commercially available microbubbles (SonoVue, Bracco). RESULTS: contrast agent was synthesized successfully using an evaporation-drying-sonication method. Most bubbles had a mean diameter of 154.2 nm and showed marked degradation 24 hours after synthesis. Although no statistically significant differences were observed between SonoVue and the synthesized contrast agent, a difference in echogenicity was observed between the synthesized contrast agent and saline (P<0.01). CONCLUSION: We successfully synthesized a US contrast agent using an evaporation-dryingsonication method. These results may help future research in the fields of anticancer drug delivery, gene delivery, targeted molecular imaging, and targeted therapy.


Subject(s)
Baths , Chloroform , Cholesterol , Contrast Media , Drug Delivery Systems , Dynamic Light Scattering , Liposomes , Methods , Microbubbles , Microscopy , Molecular Imaging , Radiotherapy, Image-Guided , Sonication , Sulfur Hexafluoride , Ultrasonography , Water
9.
Tissue Engineering and Regenerative Medicine ; (6): 498-506, 2016.
Article in English | WPRIM | ID: wpr-644865

ABSTRACT

In this study, an attempt was made to develop bi-functional constructs serving both as scaffolds and potential delivery systems for application in neural tissue engineering. The constructs were prepared in two steps. In the first step, the bulks of poly (L-lactic acid) (PLLA) in 1, 4-dioxane/water (87:13) were fabricated using liquid-liquid thermally induced phase separation technique. In the next step, the prepared bulks were coated with chitosan nanoparticles produced by two different techniques of ultrasonication and ionic gelation by grafting-coating technique. In ultrasonication technique, the chitosan solution (2 mg/mL) in acetic acid/sodium acetate buffer (90:10) was irradiated by an ultrasound generator at 20 kHz and power output of 750 W for 100 s. In ionic gelation technique, the tripolyphosphate in water solution (1 mg/mL) was added to the same chitosan solution. The physicochemical properties of the products were characterized by Scanning Electron Microscopy, Attenuated Total Reflection Fourier Transform-Infrared, liquid displacement technique, contact angle measurement, compressive and tensile tests, as well as zeta potential and particle size analysis using dynamic light scattering. Moreover, the cell proliferation and attachment on the scaffolds were evaluated through human glioblastoma cell line (U-87 MG) and human neuroblastoma cell line [BE (2)-C] culture respectively. The results showed that the samples coated with chitosan nanoparticles prepared by ultrasonication possessed enhanced hydrophilicity, biodegradation and cytocompatibility compared with pure PLLA and PLLA coated with chitosan nanoparticles prepared by ionic gelation. This study suggests successful nanoparticles-scaffold systems which can act simultaneously as potential delivery systems and tissue engineering scaffolds.


Subject(s)
Humans , Cell Line , Cell Proliferation , Chitosan , Dynamic Light Scattering , Glioblastoma , Hydrophobic and Hydrophilic Interactions , Microscopy, Electron, Scanning , Nanoparticles , Neuroblastoma , Particle Size , Tissue Engineering , Ultrasonography , Water
10.
Acta bioquím. clín. latinoam ; 41(2): 237-245, abr.-jun. 2007. ilus, graf, tab
Article in Spanish | LILACS | ID: lil-633009

ABSTRACT

El agente tensioactivo pulmonar es un material compuesto de fosfolípidos, lípidos neutros y proteínas que se encuentra en la superficie alveolar de los pulmones y facilita la ventilación alveolar. La organización molecular de los componentes del agente tensioactivo aislado de pulmones de ternera fue analizada por calorimetría diferencial de barrido y por dispersión dinámica de luz y posteriormente comparada con los componentes organizados en liposomas uni y multilamelares; además, se probó la actividad de superficie al desarrollar en cobayos el síndrome de dificultad respiratoria. Los estudios de calorimetría mostraron que las interacciones lípido-proteína fueron considerablemente abatidas en el agente tensioactivo nativo, en comparación con las del agente tensioactivo en forma de liposomas uni o multilamelares. Los experimentos de dispersión dinámica de luz indicaron que el agente tensioactivo nativo tiene forma fibrilar con interacciones limitadas entre lípidos y proteínas, lo que sugiere que se encuentra organizado en una estructura en forma de reja formando una película de estructura estable. Los resultados obtenidos resaltan la importancia de la organización molecular del agente tensioactivo. Cuando éste fue usado para tratar a los animales con síndrome de dificultad respiratoria, los valores del pH arterial y de PaCO2 mejoraron casi hasta alcanzar los valores normales; cuando se utilizó el agente tensioactivo reconstituído como liposomas uni o multilamelares, los animales no se recuperaron. Es importante enfatizar que el método seguido en el protocolo de aislamiento del agente tensioactivo pulmonar de ternera permitió obtenerlo en una forma fisiológicamente activa.


Surfactant, a highly surface-active material composed of phospholipids, neutral lipids and proteins, lines the lungs' alveolar surface facilitating alveolar ventilation. The molecular organization of surfactant components isolated from calf-lungs was analyzed by differential-scanning calorimetry and dynamic light-scattering, and subsequently compared to surfactant components organized in uni and multilamellar liposomes. The respiratory distress syndrome developed in adult guinea pigs was used for assessing surfactant activity. Calorimetry studies showed that lipid-protein interactions were considerably abated in native surfactant as compared to those of surfactant in uni or multi-lamellar liposomes. Light-scattering experiments indicated that native surfactant has a fibrillar shape with limited lipid-protein interactions, suggesting that it is organized in a lattice-like structure forming a stable film. These findings underscore the importance of the native molecular organization of surfactant. When surfactant reconstituted as uni- or multilamellar liposomes was administred to animals under respiratory distress, they did not recover. In contrast, when native surfactant was used to treat sick animals, arterial pH and PaCO2 values improved, almost reaching normal values. It is important to emphasize that fewer steps in the protocol for isolation of calf lung surfactant made it possible to obtain it in a physiologically active molecular form.


Subject(s)
Animals , Cattle , Guinea Pigs , Respiratory Distress Syndrome, Newborn/veterinary , Respiratory Distress Syndrome/veterinary , Pulmonary Surfactants/chemistry , Pulmonary Alveoli/physiology , Pulmonary Surfactants/therapeutic use , Calorimetry/veterinary , Dynamic Light Scattering/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL